The Five Senses of Math

posted by Diann Gano

We spend a lot of time outdoors. Playing. That play involves math in such natural ways that it is easy to overlook how often math comes into our lives. Research has found that early math proficiency is a better predictor of future academic success, high school graduation and college attendance than any other childhood skill. (National Governors’ Association, Unlocking Young Children’s Potential: Governors’ Role in Strengthening Early Mathematics Learning

So, here at Under the Ginkgo Tree, we encourage that investigation and provide materials that support children’s development of math concepts. Outdoors, the process for mastering the fundamentals of math is truly enhanced in a holistic and inviting environment. Come see how we create these opportunities using all five senses for all types of learners.

SIGHTexamining a tree trunk

Regardless of the season, we often spend time seeing how tall or small our friends are using resources that are available to us. Sometimes we use tape measures, but often we have other ideas.

Adding magnifying glasses, kaleidoscopes, and binoculars will slow your children down. They will look closer, longer, and think harder. Remember, we are giving them lots of time to investigate and explore and enjoy their childhood. Add these to your play space!

measuring with apples

 

 

 

 

mesauring with carrots

 

 

 

 

 

 

 

magnifying glass

 

 

 

 

 

dandelionsHOW MANY DANDELIONS?

Right! Three! Did you count? No, you subitized! We love to subitize. Subitzing is seeing a small amount of objects and knowing the number without counting. Playing with dice, you roll a six and without counting the 6 pips, you know it is six. We often play this game with fingers. We place both hands behind our back and then bring forward one hand with a few fingers showing. As they get better at this, we make it faster, or change the finger arrangement, or add both hands. We also work with subitizing outdoors with any given object. Kids love this game and I encourage you to play it often. Restaurants, long car rides, or waiting rooms are all great places to subitize! If you have fingers, and a bored child, subitize!

TASTE

cutting vegetables cutting vegetables 1 snacks

Well, this one is almost too easy. If you put six cookies in front of three children and tell them to figure it out…they will. F A I R is a favorite math word that we hear around here. Everyone has to have EQUAL amounts of everything! Every meal we serve has some sort of math discussion available.

I invited the four-year-olds to help set up lunch. When they asked if they could cut the cucumbers, we discovered lots of investigation on size, direction, more, less, and equal.

When it came time to put out the fruits and vegetables, they created sets and counted out tomatoes, cut sandwiches in half. We had a math buzz going on!

Cooking is a great opportunity to bring in math vocabulary and concepts. When cooking with children, we always try to have enough bowls, utensils and, of course eggs, for each child to make their own portion. Think about it, if you watch your friend whip up her award-winning recipe, it’s just not the same as doing it side by side with your own version. This also offers great opportunities for mentoring and scaffolding with their peers on tricks for measuring and cracking eggs. It may not seem like math, but it is. If your body and brain don’t have the energy to deal with the egg mess on any given day, we have been known to cheat with the infants and cracked the egg into the measuring cup. That counts as an egg turn for anyone not old enough to roll her eyes at the thought of it. (Usually your four- year old.)snacks

SMELLsmell dandelion holding an iris

Those little noses often lead us to food. We routinely have

discussions about how many raisins or chocolate chips are in our cookies. We also like to smell in gardens and parks. Did you know that there is a math pattern in nature called Fibonacci? Some refer to Fibonacci as nature’s number system. From the pattern of florets on a flower to the bracts of a pine cone or the leaf arrangements in plants, the same number pattern appears over and over. The basic pattern is 1,1, 2, 3, 5, 8, 13, 21, 34… The next number is found by adding up the two numbers before it. It forms a spiral. This is a bit complex for most of the young learners in our program, but we talk about it and the spirals that we see in pineapples, and pinecones and flowers.

bunch of flowers

We often count the number of petals on our flowers. Last summer we planted perennials to our play space and included a number of flowers that include this Fibonacci pattern. Cala lilies have one pedal; euphorbia have two; triilium and some iris have 3 petals; buttercups and columbine have 5; bloodroot have 8, black-eyed Susan’s have 13; shasta daisies have 21 whereas other daisies can be found with 34, 55 or even 89 petals. Isn’t that crazy fun?

spring flowers

 

baby at fence baby ringing the bellSOUND

We live a block from a college campus and the bell tower. So every hour on the hour we have some counting sound opportunity in our own backyard. Music is an easy way to add math to your outdoor play space.

We have bells placed throughout our play area. We often have obstacle courses that include ringing a bell or drumming on a drum. Music is a big part of our lives. Singing songs, counting rhymes and fingerplays combine music and math. Really is there any better place for those loud drums, bells, tambourines and maracas? What were we thinking? These are outdoor toys!

 

 

 

bells on deck
baby with tamborine children with musical instruments

 

 

 

TOUCHacorns child holding an acorn

When you give children real materials to touch and smell and feel, the learning is deeper and more authentic. There is a major difference between touching real apples and moving them from basket to basket, than counting apples on a worksheet. Looking at stripes and circles on a page is not the same as touching and understanding that each rock has stripes or circle textures or has six shades of green. It makes sense to them. They control it. They aren’t rushed to move on to the next box on the worksheet. Give them real materials.

We talk about blocks and rocks often in our program. Those two things create an unbelievable amount of building. Building is math. We spend hours and hours building things that we may not ever even play in or with. We have spent days making forts. Sometimes, we don’t ever actually play IN them. We just build them. We build zoos, and fairy homes and squirrel traps. It is the building that is the fun, the creativity, and the play. Give your children time to touch, and think and process, and arrange and rearrange. It’s all good.stack of rocks

We also play games where one child plays a rhythm and the other needs to repeat it. There’s very often pattern play going on with this. For many children that rhythm and counting go hand in hand. When we follow singing commands to go in or out, or up and down, around and through, those build spatial awareness and reasoning skills that are important skills for geometry. Everyone is happy when we have music in our lives. Make your own or fire up Pandora!

Have fun this week noticing how often math is in your child’s life. It will make you smile and give you peace to know that you are doing just fine as a parent and an educator. Keep creating math environments and playing with your kids. It’s all quite simple. Put the worksheets away. It will come when their brain development is ready and it is relevant to them. Until then, just watch, listen and smell the learning coming their way!

 

 

 

 

What is Math?

posted by Lisa Ginet

When you hear or see the word “math,” what do you think of? Your high school algebra class? Balancing your checkbook? A geeky engineer with pocket protectors? When you add “early childhood” to “math,” what do you think of then? A little one learning to say, “1, 2, 3, 4, 5, 6, 7, 8, 9, 10”? A bright poster with a circle, triangle and rectangle neatly labeled? All of these are common ideas about what math is and how math starts, but none of them are what I mean when I say “foundational math.” Before I tell you what I do mean, I want you to try something.

Look at this image:
shapes-pictureConsider this question:

Which of the figures are the same?

Often when I ask this, a person says, “They are all different from each other.” Another says, “They are all the same; they are all shapes.” Both of these answers make sense, but I often ask people to keep looking to see if anyone can come up with another answer. Usually, people then generate these six answers:

  • top two shapes are both orange
  • bottom two shapes are both green
  • left two shapes are both striped
  • right two shapes are both solid
  • top left and bottom right are both circles
  • top right and bottom left are both triangles

In fact, although none of the two shapes are identical to each other, any two of them are “the same” in some way. Figuring this out involves logical thinking about the attributes of the shapes.

This shape activity demonstrates one definition of mathematics – a logical way of thinking that allows for increasing precision. We can use math to make sense of the world. We can use math to solve problems. To use math in these ways, though, we cannot just memorize facts. We must build our own understanding, so that we can think flexibly in different situations. Without a strong foundation, a tall building would not stand for long. Likewise, without a strong foundation in mathematical concepts, children can struggle to understand the more complex mathematical thinking they need later in life.

At the Early Math Collaborative, we have developed a set of 26 “Big Ideas” – key mathematical concepts that lay the foundation for life-long mathematical learning and thinking. While these concepts can be explored at any early age, they are powerful enough that children can and should engage with them for years to come. As you engaged in the shape activity earlier, you were using two of the Big Ideas:

  • Attributes can be used to sort collections into sets.
  • The same collection can be sorted in different ways.

Most likely, you were not thinking about these ideas consciously; rather, you were looking at the shapes and thinking about them. You were using math to make sense of the puzzle I posed and to come up with a solution. This type of math may not match your prior notion of math as quickly-recalled facts and properly executed procedures. You may need to set aside some of those notions in order to develop a deep understanding of foundational math that will help you have fun doing math with children.

 

Using the Bucket Balance to Reinforce The Concept of “Same”

I like a good old bucket balance in a preschool room.  Even though there are all sorts of scales available and they each have their place and their use, the bucket balance engages children in ways that some others might not.

The bucket balance asks children to figure out which side is heavier, which side is lighter, and to consider notions of “more and less.”  But perhaps more interesting to the egocentric child, is the way the bucket balance can be used to find the “same” weight.

Why is making the balance even more interesting than the exploration of more and less?  Because the young child has an innate interest in issues of fairness and equality.  They want to know how power differentials come to be and why some people seem to fit while others don’t.  They have a vested interest in why their older siblings get to stay up later than they do and why some kids seem to always push to the front of the line.  These are issues of social parity and push them to explore the concept that “fair doesn’t always mean equal.” Making things exactly the same is the ultimate test and one that is difficult  to accomplish even for adults.IMG_0192

As children put rocks in one of the buckets in order to get it to balance, they see how difficult it is to make it exactly even.  This is especially true when using nonstandard units such as rocks.  They work very hard testing and retesting the sides, lining up their faces with the table looking for the smallest discrepancies in the weight distribution.

IMG_0199Often they have to trade one heavy rock for two smaller rocks.  This challenge continues until they are satisfied that it is even and balanced.  Try this in your own classroom with rocks or seashells or twigs and see what happens.

The 3 Pigs vs. The 3 Bears

The 3 Pigs and the 3 Bears (as in Goldilocks and the…) are two favorite children’s classics that can also be compared and contrasted with your children.  This exercise is very different from comparing and contrasting versions of the same story, since many of the similarities and differences may not be as readily apparent to young children.

Even very young children will recognize that there are 3 animals in each story – same. They will also notice that both tales have a wolf – same.   From there, the similarities get murkier while the differences become more obvious.  The 3 Pigs are brothers but the 3 Bears are a Mommy, Daddy, and Child bear – different.  There is a little girl in the bear story named Goldilocks but there are no people in the pig story – different. The Wolf is a bad guy in both stories – same, but he experiences very different fates (depending on the version you are telling!)

Even within each of these stories there are opportunities to compare and contrast.  As Goldilocks encounters different areas of the Bear’s house she notices that all of the items are the same (beds, chairs, porridge) but they are also different (firmness, size, temperature).  The Pigs all build houses but the houses are very different.

All of these similarities and differences can be described with and by the children especially if you have visual representations of the characters.  A felt board with all of the characters would work great.  Create a line down the middle of the board so the children can manipulate the characters depending on the questions you are asking.  3 pigs GoldilocksOnce you have explored both stories with the children, leave the felt board and associated pieces out for the children to explore on their own.  It is through access to the materials that they can practice telling and retelling the stories to their hearts’ content.